Digitalna obrada slike

LABORATORIJSKA VEŽBA

Modifikacija histograma slike dobijene CCD kamerom

<u>Cilj laboratorijske vežbe</u>

Cilj laboratorijske vežbe je upoznavanje s:

- dobijanjem slike pomoću CCD kamere,
- korišćenjem MATLAB-a kao softvera za obradu slike,
- izračunavanjem i grafičkim prikazivanjem histograma slike,
- modifikacijom histograma u cilju poboljšanja kvaliteta slike.

Uvodne napomene

Uzimajući u obzir osvetljenje i kontrast, razlikujemo četiri osnovne vrste slika i, samim tim, četiri osnovne odgovarajuće vrste histograma (slika 1):

- tamna slika,
- svetla slika,
- slika niskog kontrasta,
- slika visokog kontrasta.

d)

Slika 1. Četiri osnovne vrsta slika sa odgovarajućim histogramima: a) tamna slika, b) svetla slika, c) slika niskog kontrasta, d) slika visokog kontrasta

Modifikacija histograma je operacija pri kojoj se oblik histograma slike menja tako da broj pixela bude približno jednak za sve nivoe sive skale (slika 2).

b)

Slika 2. Modifikacija histograma: a) prvobitna slika sa histogramom, b) dobijena slika sa histogramom nakon modifikacije histograma

<u>Primer</u>

Modifikacija histograma u cilju poboljšanja kvaliteta slike biće demonstrirana na primeru slike 3.

Slika 3. Slika Beba2.bmp

Za izračunavanje i modifikaciju histograma koristićemo program napisan u programskom paketu MATLAB: M=imread('Beba2.bmp'); for j = 1:256;whos; NmN(j)=0;figure, imshow(M); for i = 1:256; for i = 1:256; if i < j; N(i)=0;NmN(j)=NmN(j)+N(i);NN(i)=0; end; end: end; Imax=256; GN(j)=NmN(j)*255/Nall; Jmax=256; end; for k = 1:256: MMN=histeq(M); k1 = k-1;imwrite(MMN,'Bebek.bmp'); for i = 1:Imax; figure, imshow(MMN); for j = 1:Jmax; for k = 1:256;if k1 == M(i,j); k1 = k-1;N(k)=N(k)+1;for i = 1:Imax: end; for j = 1:Jmax; end: if k1==MMN(i,j); end; NN(k)=NN(k)+1;end; end; x = 1:1:256; end; ix=i-1; end; iv=N; end; figure, plot (x-1, iv); xx = 1:1:256; fid = fopen('d1.txt','w'); ixx=i-1; for i = 1:256; ivv=NN; y = [i-1; N(i)];figure,plot (xx-1,iyy); fprintf(fid,'%6.2f %12.2f\n',v); for i = 1:256; fprintf(1,'%6.0f %12.0f\n',y); yy = [i-1; N(i); NN(i)];end; fprintf(1,'%6.0f %12.0f %12.0f\n',yy); fclose(fid); end; Nzbir=0; xx = 1:1:256; for i = 1:256; ixx=i-1; Nzbir=Nzbir+N(i); iyy=[N;NN]; end; figure,plot (xx-1,iyy); Nzbir NNSuma=0; NC=0 for i = 1:256; Prag=128 NNSuma=NNSuma+(i-1)*NN(i); for i = 1:256; end: if i < Prag; NNsr=NNSuma/Nall; NC=NC+N(i); **NNsr** end; end NC Nall=Imax*Jmax NSuma=0: for i = 1:256; NSuma=NSuma+(i-1)*N(i); end; Nsr=NSuma/Nall; Nsr

Realizacijom programa dobijamo najpre dijagram histograma slike 3, pri čemu je sa G je označen nivo sive skale, a sa NP broj pixela (slika 4).

Slika 4. Histogram slike 3 (Beba2.bmp)

Na osnovu histograma sa slike 4 se može zaključiti da preovlađuju pixeli sa tamnijim nivoima sive skale, pa ovakva slika nije razgovetna niti pogodna za dalju obradu. Srednja vrednost nivoa sive skale pixela na slici 4 iznosi $N_{sr} = 65.7$.

Korišćenjem funkcije **HISTEQ** u MATLAB-u izvršićemo modifikaciju slike i njenog histograma. Izvršenjem funkcije **HISTEQ** dobijamo modifikovanu sliku Beba2.bmp (slika 5) i njen histogram (slika 6).

Slika 5. Modifikovana slika Beba2.bmp

Slika 6. Modifikovani histogram slike Beba2.bmp

Srednja vrednost nivoa sive skale pixela na slici 6 iznosi $N_{sr} = 127.7$, što znači da su tamniji i svetliji nivoi sive skale pixela ravnomerno raspodeljeni na modifikovanoj slici, pa je ovakva slika razgovetna i pogodna za dalju obradu.

<u>Zadatak</u>

Izvršiti modifikaciju histograma slike dobijene CCD kamerom.

<u>Literatura</u>

- 1. Joyce Van de Vegte: Fundamentals of Digital Signal Processing, Prentice Hall, 2002.
- 2. Rafael C. Gonzales, Richard E. Woods: Digital Image Processing, Prentice Hall, 2002.